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DAVYDOV SOLITONS AT 300 KELVIN: THE FINAL SEARCH
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W.C. Kerr
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The original proposal by Profcssor A. S. Davydov of a soliton mechanism for
localizadon and transport of energy along linear chain molecules provided the impetus
for several research efforts which have explored the properties of these nonlinear enti-
tes in differing degrees of realism. The general conclusion from all of this work is
that the nonlinear equations of motion which have been used to describe these systems
have soliton-like solutions when they are solved in the deterministic limit. This limit
corresponds to the absolute zero of temperature, because it ignores the influence of
random thermal perturbaiions on the system. However, the questions of existence and
importance of the Davydov soliton remain controversial when non-zero temperature
effects are tuken into account, because numerical simulations and theoretical calcula-
tions done by independent research groups have reached diametrically opposed conclu-
sions.

Our 1985 paper! was the first to simulate thermal perturbations at biologically
relevant temperature (300 K). Since publishing that paper, we have done simulations
for collisions of phonon wave packets with Davydov solitons and have also taken into
account the presence of multiple quanta of the high frequency oscillator field in the
Davydov equations of motion. We present these results here. However, for the major
question about the temperature effects on the Davydov soliton, our conclusions remain
unchanged from Ref. 1. We feel that we can not improve upon what we said there, so
we refer the reader to that paper for a detailed discussion.

As explained in our other contribution in this volume, the multi-quantum
Davydov Ansarz is

Q
|W(f P> = [Zﬂﬂ(!)Bnr] cxp{—%z [Bj(t)pj - ﬂj(f)“} ]}l()), (1)
n J

We insert this into the time-dependent Schroedinger equation using the Froehlich Ham-
iltonian and obtain the following equations of motion for the functions appearing in



(1).
mﬁn = W(Bn+l - 2Bn + Bn—l) + xQ(IanH |2 - 'an—l |2)v (23)
indu =- J(an+l + an—l) + X(Bn-n - Bn—l)an. (2b)

To describe the interaction of the system with a thermal reservoir at temperature
T, we have added a damping force and a noise force,

F, = -mIP, +1,(), 3)

to (2a) for the molecular displacements. We have taken the correlation functon for
the random force to be

M, M,t)>=2mTky T3,,-8(t — 1) 4)

(kg is Boltzmann’s constant). This extension converts (2a) to Langevin equations.
The effect of the two terms in (3) is to bring the system to thermal equilibrium; we
have verified numerically that over sufficiently long time intervals the mean kinetic
energy satisfies

<E-;—m B2(r)> = —;-Nks T )

(< - - - > denotes time average). Egs. (2) with (3) included still imply the conservation
of the norm <y(¢) ly(¢)>. The number of high frequency quanta present is

<y XBIB, 1yt)>=Q (6)

Our equations involve the combination of (4) and (5), which are the classical
fluctuation-dissipation relation, with (2), which are obtained quantum mechanically.
The justification for doing this is that for parameter values near those appropriate for
the a helix a quantum of the highest-frequency acoustic mode Awy,,, is around 100 K.
If we solve the equations at 300 K, then the occupation numbers of all phonon modes
are accurately given by the classical distribution, and in that situation (5) is valid. The
use of (5) for temperatures below, say, 200 K would not be valid because of quantum
corrections to the phonon occupation numbers, but such temperatures are not biologi-
cally relevant. This point was emphasized in our original paper.

We have solved the set of stochastic ditferential equations in (2), (3), and (4)
using techniques developed by Greenside and Helfand.> The solutions were done for a
chain of 100 sites with periodic boundary conditions. The parameters used are given
in Table I, in addidon the mass was always taken to be 114 proton masses
(m = 1.904x10"2 kg ). The rate of spatial variation of the variables is determined by
tl.e ratio x%/wJ, which is given in the table. The quantity to is V(m/w) and is the time
unit used for the calculations. The only parameter not determined from other con-
siderations is the damping rate I" in (4). We have used the (dimensionless) value
" = 0.005, which is chosen so that the lowest (non-zero) phonon on our 100 site chain
is substantially underdamped. This criterion is admittedly size dependent. However,
since the self-trapping feature we want to study involves predominantly short
wavelength phonons, we want to be sure that the damping force is not the major deter-
minant of the evolution nf those phonens. Furthermore, we have varied I' from 0.0025
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to 0.05 and have found no qualitative change in the results described nere.

Table I. Parameter values.
Discrete | Continuum a-hclél
w (N/m) 5.0 13.0 13.0
J (cm 7Y 20.0 312 7.8
10710 N) 0.75 0.48 0.62
2wl 2.83 0.29 1.91
o (10713 5) 1.95 1.21 1.21

We present our results with certain diagnostics. One is "waveform" graphs: plots
of la, |? and the discrete gradient B,,; — B,_; as functions of n at a given t. A soli-
ton is recognized as a maximum in la,|* and a minimum in B,,; ~ B,_; occuring
together. A second diagnostic is a "soliton detector": on the {r,n) plane, we mark
those times and positions where both |a, |2 exceeds a certain level (chosen to be 0.02)
and B,,; — B.-; is negative. The temporal extent of the marked regions shows how
long solitonlike entities can exist.

First we show an example which verifies that the equations (2) without thermal
fluctuations do possess coherent, localized, propagating scliton solutions. Figure la
shows the soliton-detector results at a very low temperature, T = 0.02 X, with the
parameters labeled "a-helix" in Table I and with random initial conditions. We see
that several solitons are nucleated and move along the chain. The waveform graph in
Fig. 1b shows the comelation of the maximum in la, |2 and the minimum in
Ba+1 — Ba-1 wWhich characterizes the soliton. This is clear evidence that solitons can
form in this system at zero temperature.

Figure 2 shows the effect of raising the temperature to 300 K with the other
parameters remaining the same as for Fig. (1) and with random initial conditions. The
nucleation and propagation processes that take place at low temperature are now seen
not to occur. The random forces prevent the necessary correlations between the two
fields from taking place.

The previous figure shows that continual random displacements characteristic of
thermal equilibrium prevent the soliton from forming when these displacemnts have a
large enough magnitude. The following set of figures show a deterministic simulation
(no random forces) in which a pre-existing soliton is destroyed by repeated collisions
with a phonon wave-packet when the wave-packet has a large envugh amplitude. The
sustained “tugging” on the soliton by the lattice displacements pulls the soliton apart.
Two different simulations are shown. In the first the energy of the phonon wave-
packet is 16 cm~! which is approximately equal to the binding energy of the soliton.
In the second the fotal energy in the phonon wave-packet is 212 cm™"; this is approx-
imately equal to the average kinetic energy per particle at T=300 K. For the low
energy case (Fig. 3), in fact the phonon wave-packet is destroyed after about three col-
lisions with the soliton. In the higher energy case (Fig. 4) the correlations characteris-
tic of the soliton are destroyed after about ten collisions with the wave-packet. Since
the situation of thermal ejuilibrium at 7 =300 K cormesponds to repeated collisions
with wavc -packets with riuch higher energy than this value, it is not surprising that the
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solitons are not stable under these thermal disturbances.

In our other contribution in this volume?2, we described a derivation of the
Davydov equations which include multiple quanta of the high frequency oscillator sys-
tem. We present here results for two quanta (Q =2) for two temperatures T =0 and
300 K. Fig. 5 shows a simulation &t T =0 K with random initial conditions. One sees
that nucleation and propagation of solitons occurs here. (The fact that two solitons are
nucleated in this run is coincidental and not related to the fact that the number of
quanta used is Q =2.) Fig. 6 shows that raising the temperature to T =300 K again
prevents the soliton from forming. Although one might try larger number of quanta in
hopes that some positive result might occur, we do not consider that to be very likely.

The purpose of this conference is to assess the current status of Davydov’s 1973
proposal of the soliton mechanism for storage and transport of biological energy. We
believe that recent developments, motivated by our 1985 paper, conclusively show that
the proposal can not function as originally envisicned at the physiological temperatures
which are of interest in biology. Our simulations are of course constrained by being
based on the Davydov Ansarz and by introducing temperature in a way which is valid
only in the classical limit (which seems well satisfied for a-helix paramcter values).
However, the recent quantum-dynamical calculation of the soliton lifetime* and the
quantum Monte Carlo thermal equilibrium simulation of the Hamiltonian® have
achieved an unusual synergism. (These works are also discussed in this volume; see
the contributions by Schweitzer et al. and by Wang er al.) The QMC calculation shows
that solitons can not exist in an equilibrium system above 10 K, and the quantum-
dynamic calculation shows that if they do form by some non-equilibrium mechanism,
they last at most two picoseconds. Taken together these two papers reach consistent
conclusions covering both time and temperature variables and provide very strong evi-
dence that the original soliton proposal does not work at biological temperature. The
'crisis of bioenergetics” is still with us!
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figures for DKNUM: 1. nucleation at T = 0 2. lack of nucleation at T = 300 K
3. Krumhansl wave packet - low energy 4. Krumhunsl wave packet - high
energy 5. Multi-quanta (N = 2) T = 0 6. Multi-quanta (N = 2) T =300 K
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